
... technologies for a reliable hold

Fasteners for thin sheet metal

Anchor® Clifa®

Kerb Konus 🗘

Fastening technology from KerbKonus are in successful applications in a wide variety of different industrial sectors around the world.

State-of-the-art production facilities provide our customers with the assurance of quality and reliable delivery, and sophisticated fastening solutions for every conceivable field of application are implemented by our own Research and Development Department.

Close cooperation and exchange of experience and expertise on an international level ensure that our company stays at the cutting edge of technological development.

With independent branches and agencies operating in a number of countries around the world we are a truly reliable partner when it comes to secure fastening technology.

... our products and services

Depending on the required anchoring method in the material, KerbKonus offers a variety of threaded insert options:

- · self-tapping threaded inserts for metal, wood and plastics,
- Threaded inserts for cold embedding
- Threaded inserts for hot or sound embedding
- Threaded inserts for screwing into an internal thread
- Threaded inserts for riveting

Alongside its long-standing, proven spectrum of threaded for a wide variety of applications, KerbKonus also offers fastening technology-related products and services:

- Punched rivet system for thin mouldings
- Screw locking
- Thread sealing systems
- Insulating plastic coating

Kerb-Konus-Vertriebs-GmbH

Wernher-von-Braun-Straße 7 Gewerbegebiet Nord 92224 Amberg

 Phone
 +49 9621 679-0

 Fax
 +49 9621 679444

 e-mail
 KKV-Amberg@kerbkonus.de

If you have a specific problem related to the field of fastening technology – with its rich fund of expertise and comprehensive product range, KerbKonus has the solution for you.

Technical details on KerbKonus products are also provided on our homepage: **www.kerbkonus.de**

To access design data, go to the download portal of our website. Here, you will be able to download product data in any required formats or as CAD files.

Internet www.kerbkonus.de

Threaded inserts for thin sheet metal parts ...

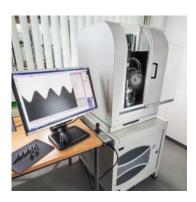
What really counts: tested quality.

At our parent plant in Amberg, we produce threaded inserts using efficient production methods. A team of qualified and highly motivated staff guarantees a consistent, high standard of production.

The number of products manufactured over the company's history reaches into the billions. State-of- the- art automation lines manufacture around the clock in a precise and high standard of quality. The efficient and low-cost production of large-scale product series is one of the strenghts on which we have based our success.

But our high-volume production output in no way compromises flexibility. We are able to quickly and efficiently produce even small batches of nonstandard items.

Our state of the art stock control system permits the reliable, prompt delivery of standard products, keeping your production running to schedule at all times and helping to minimize your warehousing costs.


We are particularly proud of a cost-toperformance ratio which ensures satisfied customers the world over. This has made KerbKonus a reputable and respected partner to industry in the global marketplace.

Quality and environment are top priority issues at KerbKonus. Quality consciousness is a continuous thread running through every aspect of the company's work and all its products and services. Quality is lived and breathed at Kerb-Konus.

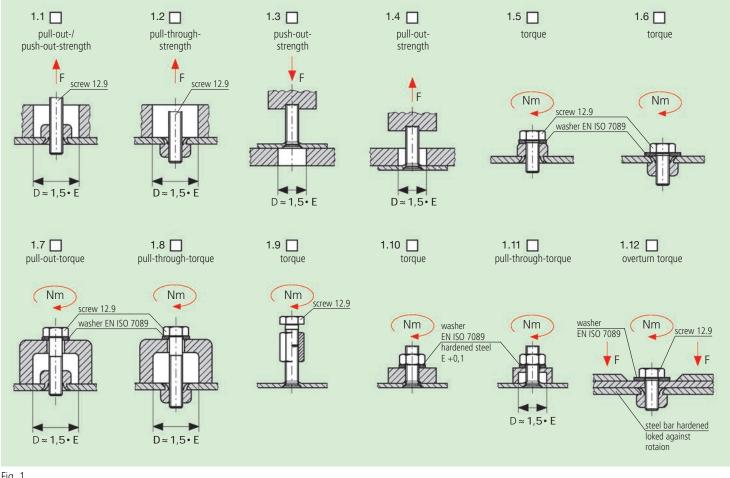
As manufacturer in the metal processing industry we are aware of our responsibility for an environmentally compatible production. With this in mind we follow up a policy of sensible resource spending and environmental friendly production both in our process engineering and our product range.

Quality System DEKRA Certificat in accordance with ISO 9001:2008 Reg.No. 30507428/3 ISO/TS 16949:2009 Reg.No. 160507011/3 ISO 14001:2004 Reg.No. 170507049/3 ISO 50001:2011 Reg.No. 181115119

Applications on the test stand ...

Threaded inserts from KerbKonus are manufactured in large piece numbers. Human lives and safety can often depend upon these tiny components, for instance in the case of airbag receiving fasteners.

Because we bear this heavy responsibility, our products are tested and monitored in line with the most stringent directives. In the case of particularly critical applications, each and every part is exhaustively tested on state-ofthe-art test equipment before it is delivered to you e.g. dimensional check, foreign particles. For Example: - dimensional check


- foreign particles

Test methods

The loading capacity of a thread depends primarily on the surface shell of the component which is exposed to shearing stress.

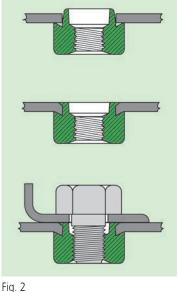
By selecting just the right threaded insert for each application, maximum reliability can be achieved. Using tried and tested, practically oriented test methods (see the table below) set of reliable specifications to ensure safe, reliable compliance with any application requirement, however unusual. In most cases, this can even be achieved using standard threaded inserts.

Anchor[®]– serrated rivet bushing ...

The Anchor[®] rivet bushing is a threaded insert made of steel or rustproof material, brass or light alloy with a counterbored and serrated shank.

Anchor[®] is riveted into thin-walled moulded parts with pre-punched receiving holes. During this process, the riveted serrations of the shank cut into the side wall, creating an absolutely secure fastening.

The special shape of the shank and the countersinking at the bottom protect the thread from damage during installation. In almost all application cases, overload testing indicated that Anchor® remains firmly seated even if the thread is completely overtorqued.



Fields of application

Anchor[®] rivet bushings enjoy universalapplication, offering a wide variety of design possibilities: for hardwearing screw connections in the automotive industry, for reliable fixture of highly sensitive electronic parts etc.

Product features

- Anchor[®] is torque-resistant and capable of loads applied from both sides.
- Anchor[®] can be used in surfacetreated, ready-plated parts, so eliminating the need for time-consuming cleaning of internal threads and reworking damage at the surface.
- When turning in the screw, it is impossible for the Anchor[®] to be forced out of the hole. This saves incalculable time losses.
- Anchor[®] sits with a precise centric fit without the use of templates or other positioning devices

ny. z

Specifications

Works Standard sheets 701 to 758, page 7 - 9

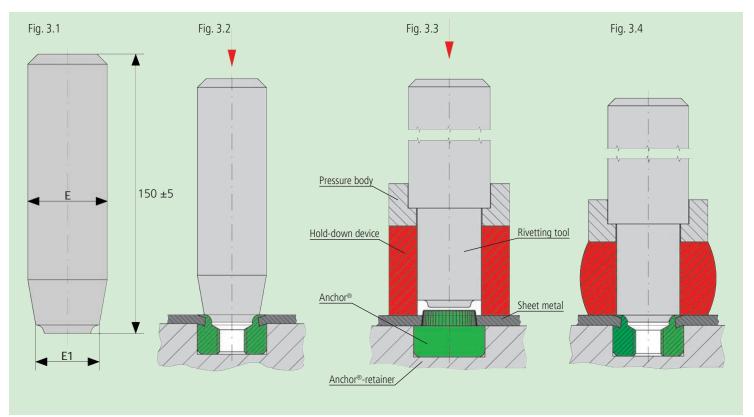
On request:

Anchor[®] with TufLok[®] screw lock in the female thread. The captive plastic coating serves as a security against the screw working loose.

Anchor[®] with sealing agent precote 5 on the support surface.

Special request

We recommend


Space and weight-saving design	Anchor [®] -Mini with small outer dimensions (Works Standard 721 to 738)
Thread closed on one side	Anchor [®] -Blind with blind thread (Works Standard 741 to 758)
Distanced fixture	Anchor [®] in special lengths
Support or bearing function	Anchor [®] without internal thread (special version))
Flush finish to the surface of the metale	No bead required in the component material.
Loading on both sides	Anchor [®] can be loaded from both sides, it is practically impossible for it to be levered out.
Can also be processed in FRP	Delamination is largely avoided in fibre-reinforced plastic (FRP).

Anchor[®]– installation ...

Fig. 3

Installation

Punch, lasing or drill hole, insert anchor and rivet the shank with a simple riveting tool (Fig. 3.2).

- manually
- using a simple press
- by inserting Anchor[®] and rivetting using a tumble or radial riveting process
- automatic feed in follow-on tools
- to prevent deformation of thin mouldings, use a tool with holdingdown device (Fig. 3.3 and 3.4).

Rivetting pressure P with mechanical rivetting (Anchor[®] made of steel) M 2/M 3 appr. 15 to 27 kN 20 to 30 kN M 4 22 to 42 kN M 5 30 to 54 kN Μ6

M 8	45	to	81 kN
M 10	65	to	97 kN
M 12 to M 16	80	to	160 kN

Fig. 4

Dimensions of the rivetting tools (Fig. 3.1):

		no. 401 nor® and Tanktyp		io. 421 ior®-Mini
	E	E ₁	E	E ₁
M 2	12	7,1	12	4,8
M 2,5 / M 3	12	7,1	12	5,5
M 3,5 / M 4	12	8,7	12	7,1
M 5	16	10,3	12	8,7
M 6	16	11,9	12	10,3
M 8	20	15,5	12	11,5
M 10	20	18,3	-	_
M 12 to M16	25	22,2		-

... technologies for a reliable hold

Rivet Bushing serrated

Anchor® Works Standard 701 0 to 718 0

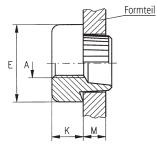
Application

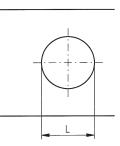
714

715 716

717

3,8 to 4,0 2)


4,1 to 4,3 2)


4,4 to 4,6 2) 4,7 to 4,9 2)

Anchor $^{\ensuremath{\ensuremath{^{(\!\!\!\ensuremath{\mathbb{R}})}}}$ is a rivet bushing for captive, torque-resistant screw connections capable of withstanding loads from both sides in thin-walled workpieces (0,5 to 5 mm thickness).

The Anchor® is suitable for thinwalled moulded components made of - steel,

- alloy,
- NF metals and
- plastic.

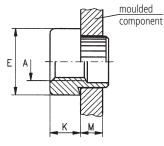
Dimensions in mm

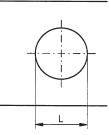
Article no. of the <u>first grou</u> p	for sheet metal thickness	Article no. of the <u>second</u> and third group	Internal thread	External diameter	Nut heigth	Recommended hole diameter
of digits	М	of digits	А	E	К	L +0,1
701	0,5 to 0,6 1)	000 020	M 2	8,0	3,2	6,0
702	0,7 1)	000 025	M 2,5	8,0	3,2	6,0
703	0,8 1)	000 030	M 3	8,0	3,2	6,0
704	0,9 to 1,0 1)	000 035	M 3,5	9,5	3,8	7,0
705	1,1 to 1,3 1)	000 040	M 4	9,5	3,8	7,0
706	1,4 to 1,6 1)	000 050	M 5	11,0	4,4	8,4
707	1,7 to 1,9 2)	000 060	M 6	12,5	5,7	9,7
708	2,0 to 2,2 2)	000 080	M 8	16,0	6,4	13,2
709	2,3 to 2,5 2)	000 100	M 10	19,0	7,6	15,5
710	2,6 to 2,8 2)	000 120	M 12	25,4	10,2	19,6
711	2,9 to 3,1 2)	000 140	M 14	25,4	10,2	19,6
712	3,2 to 3,4 2)	000 160	M 16	25,4	10,2	19,6
713	3,5 to 3,7 2)					

1) Shoulder 20° undercut 2)Surfaced shoulder

718 5,0 Exemple for finding the article number	2) Anchor [®] serrated rivet bushing with female thread M5; steel, galvablue passivated for sheet thickness 2 mm (sheet steel) Anchor [®] 70		
Materials	Steel, unrefined Steel, zinc plated, blue passivated Stahl, zinc-nickel plated, transparent passivated Stainless steel Light alloy Brass	Article no. (fourth group of digits Article no. (fourth group of digits	s) 110 s) 143 s) 500 s) 700
	Other materials and designs (e.g. nut height, shank lengt on request.	ıs of deviating sheet metal th	hicknesses)
Tolerances	ISO 2768-m		
Thread	Internal thread A: as per ISO 6H		Animation:
*) Remark	For applications in high-strength steel sheet or stainless rivet bushings in stainless steel, for a flush riveting result using the rivet bushing with the next smallest shank leng (sheet thickness: 2 mm stainless steel of high-strength ste	, we recommend th: 707 000 050. 110	

Rivet Bushing


serrated


Application

Anchor[®]-Mini is a rivet bushing for captive, torque-resistant screw connections capable of withstanding loads from both sides in thin-walled workpieces (0,5 to 5 mm thickness) made of

- steel,
- light alloy,
- NF metals and,
- plastic.

The Anchor[®]-Mini is particularly weight and space-saving due to its minimal outside dimensions.

Dimensions in mm

Article no. of the	for sheet metal thickness	Article no. of the <u>second</u>	Internal thread	External diameter	Nut height	Recommended hole diameter
<u>first grou</u> p of digits	М	and third group of digits	А	E	К	L +0,05
721	0,5 to 0,6 1)	000 020	M 2	5,0	2,3	3,5
722	0,7 1)	000 025	M 2,5	5,5	2,8	4,2
723	0,8 1)	000 030	M 3	5,5	2,8	4,2
724	0,9 to 1,0 1)	000 035	M 3,5	7,0	3,2	5,5
725	1,1 to 1,3 1)	000 040	M 4	7,0	3,2	5,5
726	1,4 to 1,6 1)	000 050	M 5	8,5	3,8	6,5
727	1,7 to 1,9 2)	000 060	M 6	10,0	5,1	7,7
728	2,0 to 2,2 2)	000 080	M 8	12,0	6,5	9,7
729	2,3 to 2,5 2)	·		•		
730	2,6 to 2,8 2)	For optimum	strength values in	stallation using th	e tumble or radial r	ivetting process is
731	2,9 to 3,1 2)	recommended		standton asing th		Netting process is
732	3,2 to 3,4 2)					
733	3,5 to 3,7 2)	1) Shoulder 20				
734	3,8 to 4,0 2)	Surfaced sh	oulder			
735	4,1 to 4,3 2)					
736	4,4 to 4,6 2)					
737	4,7 to 4,9 2)					
738	5,0 2)					

Anchor[®]-Mini serrated rivet bushing with female thread M5; steel, galvanized, blue passivated for sheet thickness 2 mm (sheet steel) Anchor[®]-Mini 728 000 050. 110 *)

Steel, unrefined Steel, zinc plated, blue passivated Stahl, zinc-nickel plated, transparent passivated Stainless steel Light alloy Brass

Internal thread A: as per ISO 6H

Other materials and designs (e.g. nut height, shank lengths of deviating sheet metal thicknesses) on request.

Tolerances ISO 2768-m

Exemple for finding

the article number

Materials

Thread

*) Remark For applications in high-strength steel sheet or stainless steel sheet, or when using rivet bushings in stainless steel, for a flush riveting result, we recommend using the rivet bushing with the next smallest shank length: 727 000 050. 110 (sheet thickness: 2 mm stainless steel of high-strength steel sheet).

... technologies for a reliable hold

Rivet Bushing

serrated

Anchor®-Blind Works Standard 741 0 to 758 0

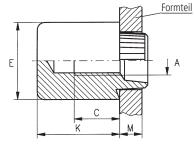
Application

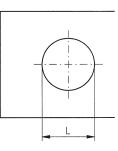
757

758

Exemple for finding

the article number


4,7 to 4,9 2)


2)

5,0

Anchor[®]-Blind is a rivet bushing with a threaded blind hole (sealed thread) for captive, torqueresistant screw connections in thin-walled workpieces. (0,5 to 5 mm thickness) the Anchor[®] is suitable for thinwalled moulded parts made of - steel,

- steel,
 light alloy,,
- NF metal and
- plastic.

							Dimensions in mm
Article no. of the	for sheet metal thickness	Article no. of the <u>second</u> and third group	Internal thread	External diameter	Nut height	Recommended hole diameter	Thread depth min.
<u>first grou</u> p of digits	М	of digits	А	E	К	L +0,1	С
741	0,5 to 0,6 1)	000 030	M 3	8,0	8,5	3,2	3,0
742	0,7 1)	000 035	M 3,5	9,5	9,0	7,0	4,0
743	0,8 1)	000 040	M 4	9,5	9,0	7,0	4,0
744	0,9 to 1,0 1)	000 050	M 5	11,0	10,0	8,4	5,0
745	1,1 to 1,3 1)	000 060	M 6	12,5	10,5	9,7	5,5
746	1,4 to 1,6 1)	000 080	M 8	16,0	12,0	13,2	5,5
747	1,7 to 1,9 2)	000 100	M 10	19,0	13,5	15,5	6,0
748	2,0 to 2,2 2)	000 120	M 12	25,4	19,0	19,6	7,0
749	2,3 to 2,5 2)						
750	2,6 to 2,8 2)						
751	2,9 to 3,1 2)	1) Shoulder 2					
752	3,2 to 3,4 2)	2) Surfaced sh	noulder				
753	3,5 to 3,7 2)						
754	3,8 to 4,0 2)						
755	4,1 to 4,3 2)						
756	4,4 to 4,6 2)						

Anchor[®]-Blind serrated rivet bushing with female thread M5; steel, galvanized, blue passivated for sheet thickness 2 mm (sheet steel) Anchor[®]-Blind 748 000 050. 110 *)

Materials Steel, unrefined Article no. (**fourth** group of digits) 100 Article no. (**fourth** group of digits) 110 Steel, zinc plated, blue passivated Stahl, zinc-nickel plated, transparent passivated Article no. (**fourth** group of digits) 500 Stainless steel Light alloy Brass Other materials and designs (e.g. nut height, shank lengths of deviating sheet metal thicknesses) on request. ISO 2768-m Tolerances Thread Internal thread A: as per ISO 6H *) Remark For applications in high-strength steel sheet or stainless steel sheet, or when using rivet bushings in stainless steel, for a flush riveting result, we recommend using the rivet bushing with the next smallest shank length: 747 000 050. 110 (sheet thickness: 2 mm stainless steel of high-strength steel sheet).

Clifa[®] press-in nut/stud ...

Clifa[®]-press-in nuts and Clifa[®] studs are threaded inserts made of steel with a specially formed shank or head.

Clifa[®]-press-in nuts and Clifa[®] studs can also be supplied in rust-proof material, and the nuts additionally in light alloy.

Clifa[®]-threaded inserts are pressed into moulded components with prepunched receiving holes. During this process, the material flows out of the area of the hole wall into the gear ring / the annular grooves of the Clifa[®] threaded inserts. A permanent connection is formed.

Several Clifa[®] inserts can be installed in a single work process. The fastening screw is always screwed in from the opposite side.

Fields of application

Clifa[®] press-in nuts and Clifa[®] studs are used to fasten all different types of appliance components, as spacers pins and bushings for plastics, e.g. circuit boards etc.

Product features

- Clifa[®] is torque-proof, capable of withstanding high loads.
- It has minimal outside dimensions for space and weight-saving
- The thread is wear-resistant, clean and true to gauge
- Mounting in drilled, punched or lasered receiving holes
- Do not countersink drill holes in the component
- Can be used in surface-treated, galvanized or unweldable materials
- Clifa[®] is not pressed out during the screwing process.
- The component material must be softer than the Clifa[®] element

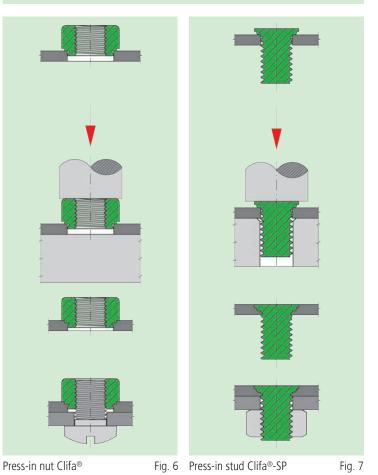
Specifications

Works Standard sheets Clifa® Pages 11 to 20

High-performance installation equip ment for short cycle times in largescale production on request.

Clifa[®] installation ...

Installation


The receiving hole is punched, lasered or drilled but not deburred or countersunk.

With punched holes, Clifa® is pressed in from the punching burr side. The pressin process takes place on a plane parallel basis using a customary press with adjustable pressure level, until the surface of the shoulder in the Clifa® pressin nut comes to rest flat against the surface of the sheet metal.

In the case of the Clifa®-SP/SPD/SPS and SR stud, the head must be fully pressed in and come to rest flush with the surface of the sheet metal.

Pressure which is too high or applied only on one side as well as inclined support surfaces must be avoided wherever possible.

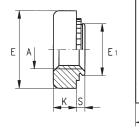
Examples for mounting

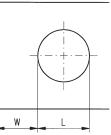
Kerb Konus 🗘

Special request	We recommend					
short length	Clifa [®] -M	(Works Standard 500 0 to 503 0)				
standoff bushings for metals	Clifa®-AM	(Works Standard 503 8 to 525 8)				
standoff bushings for plastics threaded press-in stud	Clifa®-AL	(Works Standard 503 6 to 525 6)				
Flush surface on the press-in side of the nut element (/- thread closed on one side)	Clifa®-ABO/-ABG	(Works Standard 570 0 to 571 0)				
for thin sheet metals 1,0 mm	Clifa [®] -SPD	(Works Standard 5 2)				
threaded press-in stud for high force	Clifa [®] -SA	(Works Standard 515 4 to 534 4)				
threaded press-in stud for epoxy resin moulding materials	Clifa [®] -SL	(Works Standard 506 7 to 518 7)				
threaded press-in stud for lower press-in force	Clifa [®] -SAD	(Works Standard 515 9 to 534 9)				

Press-in nut

for metal


Clifa[®]-M Works Standard 500 0 to 503 0


Application

Clifa®-press-in nuts are used to create wear-free screw connections capable of withstanding high loads in thinwalled moulded components from 0,8 mm in thickness made of

- steel,
- light alloy,,
- NF metal (up to hardness HRB 80).

The nut is anchored in the component as a result of the press-in process.

Dimensions in mm

	Article no. of the <u>first grou</u> p	for sheet metal thickness	Shank height max.	Article no. of the <u>second</u> and third group	thread	External diameter	Nut height	Collar	Hole diameter	Minimum spacing
	of digits	М	S	of digits	А	E	к	±0,05 E1	+0,05 L	w
	500 0	0,8 to 1,0	0,7	000 020	M 2	6,0	1,6	4,15	4,2	2,9
M3 to	501 0	1,1 to 1,4	1,0	000 025	M 2,5	6,0	1,6	4,15	4,2	2,9
M5	502 0	1,5 to 2,3	1,3	000 030	M 3	7,0	1,6	4,7	4,75	3,6
	503 0	from 2,4	2,2	000 040	M 4	8,0	2,4	5,35	5,4	3,8
	500 0	1,0 to 1,3	1,0	000 050	M 5	9,0	2,4	6,3	6,35	3,8
M6	501 0	1,4 to 2,3	1,35	000 060	M 6	11,0	4,4	8,7	8,75	4,6
to M8	502 0	2,4 to 3,2	2,2	000 080	M 8	12,5	6,0	10,45	10,5	4,8
inio	503 0	from 3,3	3,0	000 100	M 10	15,0	6,7	12,6	12,7	4,8
	501 0	2,4 to 3,2	2,2							
M10	502 0	3,3 to 6,3	3,0							
	503 0	from 6,4	6,0							

Example for finding the article number

Self-clinching press-in nut Clifa[®]-M with internal thread M3 made of hardened, zinc plated and blue passivated steel for sheet metal thickness 1,8 mm: Clifa[®]-M 502 000 030.110

Materials

Steel hardened, zinc plated, blue passivated * Steel hardened, zinc-nickel plated, transparent passivated * Stainless steel Light alloy
 Article no. (fourth group of digits)
 110

 Article no. (fourth group of digits)
 143

 Article no. (fourth group of digits)
 500

 Article no. (fourth group of digits)
 700

Other finishes or special shapes on request; standoff bushings see page 14.

* Also available as a cold-forming part (steel, tempered FK10).

Tolerances ISO 2768-m

Thread Internal thread A: as per ISO 6H

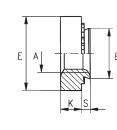
Press-in force as a guideline value for selection of the press.

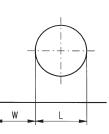
Clifa®-M, Clifa®-AM, Clifa®-P	For shaped parts made of:
	Steel
M 2 / M 2,5	5 to 15 kN
M 3	5 to 17 kN
M 4	7 to 20 kN
M 5	7 to 25 kN
M 6	15 to 37 kN
M 8	17 to 40 kN
M 10	20 to 50 kN

Animation:

The required press-in force must be determined by trial and error. For different material qualities and surfaces, higher press-in force may be required. The firmest fit is achieved if the recommended hole diameters and tolerances are precisely adhered to.

... technologies for a reliable hold


Press-in nut


self-clinching

Clifa[®]-P Works Standard 500 5 to 502 5

Application

Clifa[®]-press-in nuts are used to create wear-free screw connections in thin-walled moulded components from 0,8 mm in thickness.

Dimensions in mm

	Article no. of the <u>first grou</u> p of digits	für Blechdicke min.	Schafthöhe maximal	Article no. of the <u>second</u> and third group of digits	thread	External diameter		Collar max.	Hole diameter +0,08	Minimum spacing
	er algree	М	S		А	E	K	E1	L	W
M4	500 5	0,8	0,76	500 040	M 4	7,9	2,0	5,38	5,4	4,2
to	501 5	1,0	0,97	500 050	M 5	8,7	2,0	6,38	6,4	3,9
M5	502 5	1,4	1,37	500 060	M 6	11,05	4,08	8,72	8,75	4,23
MC	500 5	1,2	1,15	500 080	M 8	12,65	5,47	10,47	10,5	4,47
M6	501 5	1,4	1,37	500 100	M 10	16,50	7,9	12,67	12,7	5,65
M8	501 5	1,4	1,38							
IVIO	502 5	2,3	2,21							
M10	501 5	1,5	1,48							
IVITO	502 5	2,3	2,21							

Example for finding the article number Self-clinching press-in nut Clifa[®]-P with internal thread M3 made of tempered FK10, zinc plated and blue passivated steel for sheet metal thickness 1,4 mm: Clifa[®]-P 502 500 030.110

Materials

Steel tempered FK10, zinc plated, blue passivated Steel tempered FK10, zinc-nickel plated, transparent passivated Article no. (**fourth** group of digits) 110 Article no. (**fourth** group of digits) 143

Other finishes or special shapes on request.

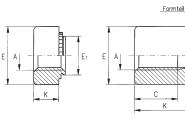
Tolerances ISO 2768-m

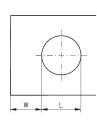
Thread Internal thread A: as per ISO 6H

Press-in force Guideline values for press-in force, see page 12

Press-in nut / standoff bushings

for metal

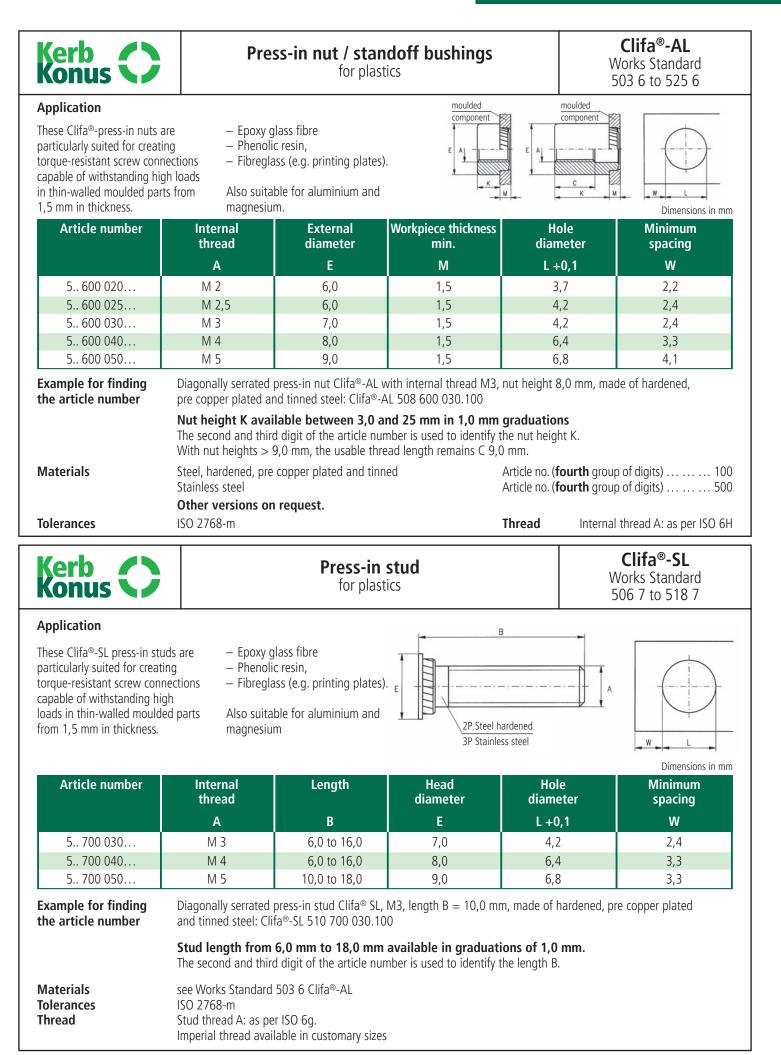



Application

Clifa®-press-in nuts/standoff bushings are used to create wearfree screw connections capable of withstanding high loads in thin-walled moulded components from 0,8 mm in thickness made of

- steel,
 light alloy,
- NF metal (up to hardness HRB 80).

The nut is anchored in the component as a result of the press-in process.



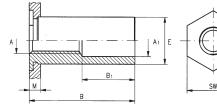
Dimensions in mm

Article number for sheet metal Internal Collar Hole Internal Minimum thickness thread thread diameter diameter spacing Μ Ε E₁ L +0,05 W Α М3 7,0 5.. 800 0.. ... 0,8 to 1,0 4,7 4,75 3,6 5.. 800 1.. ... 1,1 to 1,4 M 4 8,0 5,35 5,40 3,8 5.. 800 2.. ... 1,5 to 2,3 M 5 9,0 6,3 6,35 3,8 5.. 800 3.. ... from 2,4 Example for finding Self-clinching press-in nut Clifa®-AM with internal thread M3, nut height 8,0 mm, made of hardened, the article number zinc plated and blue passivated steel for sheet metal thickness 1,8 mm: Clifa®-AM 508 800 230.110 Mutternhöhe K von 3,0 bis 25 mm in Abständen von 1,0 mm lieferbar. The second and third digit of the article number (503 800...; 504 800; 505 800...; ...; 525 800...) are used to identify the nut height K, the **seventh** digit to differentiate the sheet thickness (503 800 **1**30...; 503 800 **2**30...; 503 800 **3**30...). With nut heights > 8,0 mm, the usable thread length remains C 7,5 mm. **Materials** Stahl gehärtet, verzinkt, blau passiviert Artikel-Nr. (vierte Zifferngruppe) 110 Stahl gehärtet, Zink-Nickel, transparent passiviert Artikel-Nr. (vierte Zifferngruppe) 143 Edelstahl Artikel-Nr. (vierte Zifferngruppe) 500 Leichtmetall Other finishes or special shapes on request. ISO 2768-m Tolerances Thread Internal thread A: as per ISO 6H **Press-in force** Guideline values for press-in force, see page 12

... technologies for a reliable hold

Press-fit threaded standoff bushings – thru-hole-thread –

for metal


Clifa[®]-ABO Works Standard

570 0 to 570 1

Application

Clifa[®]-ABO press-fit threaded bushings are intended for the production of wear-resistant screw-connections in thinwalled moulded parts from thickness 1,0 mm.

The hexagon is pressed flush into round mounting holes.

Article number of the <u>first grou</u> p of digits	Internal thread	Hexagon	for sheet metal thickness	External diameter -0,13	Counter bore diameter ±0,13	Hole diameter +0,08	Minimum spacing
	А	SW	М	E	A 1	L	W
570 0	M 3	4,8	from 1,0	4,19	3,2	4,2	3,9
570 1	M 3	6,4	from 1,0	5,38	3,2	5,4	4,1
570 0	M 4	7,9	from 1,3	7,11	4,8	7,2	4,4
570 0	M 5	7,9	from 1,3	7,11	5,35	7,2	4,4

Article number of the <u>first grou</u> p of digits	Internal thread A	Bushing length + 0,05/ - 0,13 B					
030	M 3	3 – 8	9 – 12				
1 030	M 3	5 - 0	5-12				
040	M 4	3 – 8	9 – 15	16 – 21	22 – 25		
050	M 5	5 - 0	5 - 15	10 - 21	22 - 25		
Bore dept	h B1	none	4	8	11		

Example for finding the article number	Press-fit threaded bushing Clifa [®] -ABO with internal thread M4, bushing length 10, made of hardened, zinc plated, blue passivated steel for metal sheet thicknesses from 1,3 mm: Clifa [®] -ABO 570 010 040. 110					
	Bushing length B available from 3,0 to 25 mm in intervals of 1,0 mm.					
	The fourth digit of the article number is used to differentiate the across-flats SW measurement for the thread dimension M3, the fifth and sixth digit to identify the bushing length B (570 0 03 ; 570 0 04 ; 570 0 05 ; 570).					
Materials	Steel hardened, zinc plated, blue passivated	Article no. (fourth group of digits) 110				
	Other finishes or special shapes on request.					
Tolerances	ISO 2768-m					
Thread	Internal thread A: as per ISO 6H					

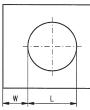
Press-in force as a guideline value for selection of the press

Clifa [®] ABO	Press-in force
M 3	20 to 25 kN
M 4	30 to 40 kN
M 5	40 to 50 kN

The required press-in force must be determined by trial and error. For different material qualities and surfaces, higher press-in force may be required. The firmest fit is achieved if the recommended hole diameters and tolerances are precisely adhered to.

Press-fit threaded standoff bushings - blind thread -

for metal


Clifa[®]-ABG Works Standard 571 0 to 571 1

Application

Clifa®-ABG is a press-fit threaded bushing with blind tapped hole (sealed thread) for the production of wearresistant, heavyduty screwconnections in thinwalled moulded parts from thickness 1,0 mm. The hexagon is pressed flush into round mounting holes

Article number of the <u>first grou</u> p of digits	Internal thread	Hexagon	for sheet metal thickness	External diameter – 0,13	Hole diameter +0,08	Minimum spacing
	А	SW	М	E	L	W
571 0	M 3	4,8	from 1,0	4,19	4,2	3,9
571 1	M 3	6,4	from 1,0	5,38	5,4	4,1
571 0	M 4	7,9	from 1,3	7,11	7,2	4,4
571 0	M 5	7,9	from 1,3	7,11	7,2	4,4

Article number of the <u>first grou</u> p of digits	Internal thread A	Bushing length + 0,05/ – 0,13 B				
030 1 030	M 3 M 3	8 – 11	12 – 13	14 – 17	18 – 25	
040	M 4	8 – 11	12 – 13	14 — 17	18 – 25	
050 Thread leng	M 5 Jth C	4	5	6,5	9,5	

Example for finding the article number	Press-fit threaded bushing Clifa [®] -ABG with internal thread M4, bushing length 10, made of hardened, zinc plated, blue passivated steel for metal sheet thicknesses from 1,3 mm: Clifa [®] -ABG 571 010 040.110					
	Bushing length B available from 8,0 to 25 mm in intervals of 1,0 mm.					
	The fourth digit of the article number is used to differentiate the across-flats SW measurement for the thread dimension M3, the fifth and sixth digit to identify the bushing length B (571 0 03 ; 571 0 04 ; 571 0 05 ; 571).					
Materials	Steel hardened, zinc plated, blue passivated	Article no. (fourth group of digits) 110				
	Other finishes or special shapes on request.					
Tolerances	ISO 2768-m					
Thread	Internal thread A: as per ISO 6H					

Press-in force as a guideline value for selection of the press

Clifa [®] ABG	Press-in force
M 3	20 to 25 kN
M 4	30 to 40 kN
M 5	40 to 50 kN

The required press-in force must be determined by trial and error. For different material qualities and surfaces, higher press-in force may be required. The firmest fit is achieved if the recommended hole diameters and tolerances are precisely adhered to.

Kerb Konus 🗘	Press-in for me		Clifa [®] -SP/-SR/-SPD Works Standard 506 to 534
Application		Typ SP/SPD	B
These Clifa [®] -press-in studs are particularly suited for creating torque-resistant screw connec-	– Steel – Stainless steel – Brass		

torque-resistant screw connec tions capable of withstanding high loads in thin-walled moulded parts made of

- Copper
- Light alloy etc.

The stud is anchored in the component by the serrations as a result of the press-in process.

Article no. <u>second and</u> <u>third group</u> of digits	Thread A	for sheet metal thickness ≥	Head diameter E SP/SPD SR		Hole diameter +0,05 L	Minimum spacing ≥ W	Tightening torque of the nut ≤ Nm
00 025	M 2,5	1,0	4,0	_	2,5	3,5	0,7
00 030	M 3	1,0	4,6	4,3	3,0	4,0	1,5
00 040	M 4	1,0	5,9	5,7	4,0	5,0	2,9
00 050	M 5	1,0	6,5	6,5	5,0	5,0	6,0
00 060	M 6	1,5	8,5	8,5	6,0	5,0	10,0
00 080	M 8	1,5	10,0	11,0	8,0	6,0	20,0

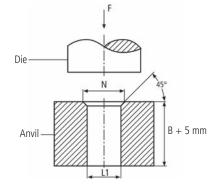
Dimensions in mm

Other materials, types and finishes on request.

Typ SR

Example for finding the article number

Self-clinching press-in stud Clifa®-SP, M3 tempered, zinc plated and blue passivated steel, 10 mm long, with serrations at the head for sheet metal thickness 1,2 mm: Clifa®-SP 510 000 030.110


Standard For lower press in force For sheet metal ≤ 1,0 mm	Coarse serration at the head Clifa®-SP Fine serration at the head Clifa®-SR Thin-metal press-in stud Clifa®-SPD	Article no. Article no. Article no.	5 000 5 100 5 200
Materials	Steel tempered, zinc plated, blue passivated ** Steel tempered, zinc-nickel plated, transparent passivated ** Stainless steel	Article no. (fourth group of dig Article no. (fourth group of dig Article no. (fourth group of dig	its) 143
Tolerances	ISO 2768-m		

Tolerances

Thread

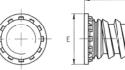
Stud thread A: as per ISO 6g, imperial thread available in all customary sizes.

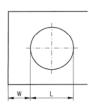
*) Length B **) Material available up to 60 mm Press-in stud in tempered steel, available in customary strength classes.

			Dimensions in mm
Anvil for Clifa®	Hole +0,1 L1	Countersink Press-in for for serrations SP/SR/SPD N+0,1 kN	
		-	
M 2,5	2,6	3,4	8,9 to 12
M 3	3,1	4,0	10,5 to 19
M 4	4,1	5,2	16 to 25
M 5 / Ø 5,0	5,1	6,4	29 to 35
M 6	6,1	7,6	30 to 50
M 8	8,1	10,2	30 to 60

The press-in force F is dependent on the Clifa® dimension, the material and the thickness of the shaped component and also the type of serration at the head. The Clifa® head must be fully embedded and must come to rest flush with the surface of the sheet metal. Excessive force must be avoided. The hole diameter of the part to be screwed on \approx A+0,6 mm.

Press-in stud


with quick-fastening thread


Clifa[®]-SPS Works Standard

510 3 to 534 3

Application

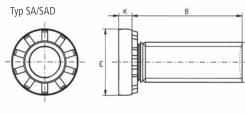
Clifa[®]-press-in stud with quickfastening thread is used to produce wear-proof screw connections. The coarse thread allows fixing elements such as clips, quick fasteners or assembly nuts to be simply pushed or turned on, eliminating the need for laborious screwing. Further benefit: Higher coating thicknesses do not impair the thread function.

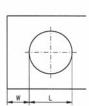
						Dimensions in mm		
Article number	Thread	Length	Head diameter	Hole diameter	Hole for anvil	Minimum spacing		
	А	В	E ± 0,2	L +0,05	L ₁	w		
5 300 500	Ø 5,0 x 1,6	10,0 to 34,0	6,4	5,2	5,2	4,7		
Example for finding the article number								
Materials	Steel tempered, zinc plated, blue passivated *Article no. (fourth group of digits)							
Tolerances	ISO 2768-m							

Press-in forceGuideline values for press-in force, see page 18

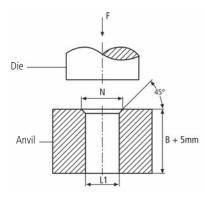
*) Material Press-in stud in tempered steel, available in customary strength classes.

Press-in stud


for metal


Clifa[®]-SA/SAD Works Standard

506 to 534


Application

Clifa®-press-in studs are used to create wear-free screw connections capable of withstanding high loads in thin-walled moulded components. The reinforced head shape permits higher loading capacity to be achieved.

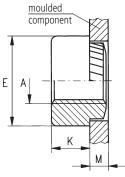
														[Dimensions in mm
Article number <u>first grou</u> p of digits	Length ±0,2			Available		Article no. <u>second and</u> <u>third group</u> of digits	Thread	for sheet metal thickness	Head dia- meter	Head heigth ±0,1	Hole dia- meter	Minimum spacing	Tightening torque of the nut (steel sheet)		
(selection series)	B*)	M3	M4	M5	M6	M8	M10		Α	≥	E	K	L +0,1	≥W	≤ Nm
510	10,0	Х	Х	Х	Х			00 030	M 3	1,0	6,0	0,8	3	8,5	1,3
512	12,0	Х	Х	Х	Х	Х		00 040	M 4	1,0	7,5	1,2	4	9,5	2,9
515	15,0	Х	Х	Х	Х	Х	Х	00 050	M 5	1,2	8,5	1,5	5	10,5	6,0
520	20,0	Х	Х	Х	Х	Х	Х	00 060	M 6	1,2	10,0	1,5	6	11,5	10,0
525	25,0	Х	Х	Х	Х	Х	Х	00 080	M 8	1,5	12,5	1,75	8	12,5	25,0
530	30,0	Х	Х	Х	Х	Х	Х	00 100	M 10	2,0	15,7	2,2	10	13,5	36,0
534	34,0	Х	Х	Х	Х	Х	Х								
Example for finding the article number Materials				Press-in stud Clifa®-SA, M5 made of tempered, zinc plated and blue passivated steel, 20 mm long: Clifa®-SA 520 400 050.110 Steel tempered, zinc plated, blue passivated ** Steel tempered, zinc/nickel plated, transparent passivated ** Article no. (fourth group of digits) 14 Article no. (fourth group of digits) 14 Article no. (fourth group of digits) 14 Stainless steel											
Standard design For sheet metal ≥ 0,8 mm				Coarse serration at the head Clifa®-SA Thin metal press-in stud Clifa®-SAD				Articl Articl				5 400 5 900			
Tolerances				ISO 2768-m											
Thread				Stud thread A: as per ISO 6g Other dimensions on request. Animation							nimation:				
*) Length B				available up to 60 mm											
				Press-in stud with several dog points on request. See enquiry data sheet on next page.											
**) Material				Press-in stud in tempered steel, available in customary strength classes.											

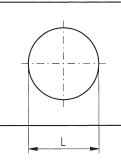
			Dimensions in mm
Anvil for: Clifa®	Hole +0,1	Countersink for serrations	Press-in force
	L1	N+0,1	kN
M 3	3,1	4,0	9,0 to 15,0
M 4	4,1	5,2	14,5 to 38
M 5	5,1	6,4	21 to 42
M 6	6,1	7,6	21 to 50
M 8	8,1	10,2	21 to 60
M 10	10,1	12,2	32 to 84

The press-in force F is dependent on the Clifa[®] dimension, the material and the thickness of the shaped component and also the type of serration at the head. Excessive force must be avoided. The hole diameter of the part to be screwed on \approx A+0,6 mm.

Kerb Konus	\bigcirc		E Pre – se	nquiry ss-in st lect type	data s ud Cli e of pa	heet fa®-SA rt end –			KerbKo 621 679	
Enquiry from Project:					F	Enquiry no.: Project no.:				
Contact: Company: Mr. / Mrs.: Phone: Fax:					- F	Contact: KerbKonus: Mr. / Mrs.: Phone: Fax:				
Mail: Piece no.: We require	a quotatior				[(Mail:	ubmitted on: le on:			
	amples technichal a	advice				Pilot series Series start				
						Jart end KKV DIN EN ISO 4753 (RL)				
Please enter yo	ur raquiramente	∍ <u>† ≠////</u>		part end KK	****					
-	ensions in mr		En	d of threa	d		Refinement		Sheet r	metal /
A E	K B	M	ККV	КК	PN	bright	blue ^l	ayer thickness µm	moulded o Material	ompound Material
Other thread er	ndings on reque	st.								

Please separate at the perforated line and fax or mail to KerbKonus


Soldering nuts – collated version –


Clifa[®]-AL Works Standard 503 6

Anwendung

These Clifa[®]-AL soldering nuts Are particulary suited for the Creation of torsion-proof screw unions with high bords. The nuts are fastened by soldering to the pcb. The nuts are supplied collated on a belt and can be using customary automatic SMD assembly devices.

- Cost saving due to processing with automatic SMD assembly devices
- no damage to pcbs (press-inprocess is eliminated)
- Process reliable assembly

Dimensions in mm

Article no. ... 134A

Article no. ... 134B

Article no.	Thread	Workpiece thickness min.	External diameter	Nut heigth	Hole diameter + 0,1	
	А	М	E	К	L	
535 000 020	M 2	1,5	5,5	1,5	4,3	
535 000 025	M 2,5	1,5	5,5	1,5	4,8	
536 100 030	M 3	1,5	5,5	1,5	4,8	
538 100 040	M 4	1,5	8,75	2,0	7,0	
537 000 050	M 5	1,5	9,5	3,0	7,5	

Material	Steel hardened, pre copper plated and tinned Steel hardened, pre copper plated and tinned and gluing pad
	Other finishes or special shapes (e.g. standoff bushings) on request.
Colation	in accordance with DIN EN 60286-3 (type II blister belt)
Tolerances	ISO 2768-m

Thread Internal thread A: as per ISO 6H

Fasteners for special applications ...

KerbKonus – Close to its customers. Around the world. Across every sector of industry.

First and foremost, for you customer proximity means a rapid response to your requirements and the fast, efficient realisation of the right fastening solution for you.

Detailed informations for further products and applications get in our technical publications.

Kerb-Konus-Vertriebs-GmbH P.O.Box 1663 92206 Amberg

Nr.20

Phone	+49 9621 679-0
Fax	+49 9621 679444
e-mail	KKV-Amberg@kerbkonus.de

Internet www.kerbkonus.de

Amberg Headquarters Production and Sales

Kerb-Konus-Vertriebs-GmbH Wernher-von-Braun-Straße 7 92224 Amberg Production plant Hadamar

... and around the world.

Kerb-Konus Fasteners Pvt. Ltd. Kolhapur/India

K.K.V. Corporation Japan Osaka/Japan

KKV AG Sattel/Switzerland

Precision Fasteners Inc. Somerset, New Jersey/USA

Kerb-Konus Italia s.r.l. Mulazzano (LO)/Italy

Konus 🕻

No.60

Rugeley/Staffordshire UK **Kerb Konus Espanola S. A.**

Kerb-Konus UK

Navalcarnero/Madrid Spain

KKV Belgium Neigem/Belgium

Sofrafix Bethune France

Other foreign agents in a wide number of countries. Addresses on request or under www.kerbkonus.de

